首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7283篇
  免费   2665篇
  国内免费   2168篇
测绘学   129篇
大气科学   378篇
地球物理   4044篇
地质学   6005篇
海洋学   577篇
天文学   349篇
综合类   120篇
自然地理   514篇
  2024年   17篇
  2023年   71篇
  2022年   114篇
  2021年   204篇
  2020年   222篇
  2019年   448篇
  2018年   647篇
  2017年   671篇
  2016年   725篇
  2015年   701篇
  2014年   723篇
  2013年   1022篇
  2012年   714篇
  2011年   628篇
  2010年   556篇
  2009年   461篇
  2008年   519篇
  2007年   457篇
  2006年   492篇
  2005年   419篇
  2004年   379篇
  2003年   353篇
  2002年   284篇
  2001年   240篇
  2000年   271篇
  1999年   140篇
  1998年   89篇
  1997年   109篇
  1996年   89篇
  1995年   84篇
  1994年   74篇
  1993年   38篇
  1992年   47篇
  1991年   32篇
  1990年   17篇
  1989年   20篇
  1988年   10篇
  1987年   14篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1981年   3篇
  1979年   2篇
  1977年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
2.
3.
This paper studies dynamic crack propagation by employing the distinct lattice spring model (DLSM) and 3‐dimensional (3D) printing technique. A damage‐plasticity model was developed and implemented in a 2D DLSM. Applicability of the damage‐plasticity DLSM was verified against analytical elastic solutions and experimental results for crack propagation. As a physical analogy, dynamic fracturing tests were conducted on 3D printed specimens using the split Hopkinson pressure bar. The dynamic stress intensity factors were recorded, and crack paths were captured by a high‐speed camera. A parametric study was conducted to find the influences of the parameters on cracking behaviors, including initial and peak fracture toughness, crack speed, and crack patterns. Finally, selection of parameters for the damage‐plasticity model was determined through the comparison of numerical predictions and the experimentally observed cracking features.  相似文献   
4.
A constitutive model that captures the material behavior under a wide range of loading conditions is essential for simulating complex boundary value problems. In recent years, some attempts have been made to develop constitutive models for finite element analysis using self‐learning simulation (SelfSim). Self‐learning simulation is an inverse analysis technique that extracts material behavior from some boundary measurements (eg, load and displacement). In the heart of the self‐learning framework is a neural network which is used to train and develop a constitutive model that represents the material behavior. It is generally known that neural networks suffer from a number of drawbacks. This paper utilizes evolutionary polynomial regression (EPR) in the framework of SelfSim within an automation process which is coded in Matlab environment. EPR is a hybrid data mining technique that uses a combination of a genetic algorithm and the least square method to search for mathematical equations to represent the behavior of a system. Two strategies of material modeling have been considered in the SelfSim‐based finite element analysis. These include a total stress‐strain strategy applied to analysis of a truss structure using synthetic measurement data and an incremental stress‐strain strategy applied to simulation of triaxial tests using experimental data. The results show that effective and accurate constitutive models can be developed from the proposed EPR‐based self‐learning finite element method. The EPR‐based self‐learning FEM can provide accurate predictions to engineering problems. The main advantages of using EPR over neural network are highlighted.  相似文献   
5.
Kiacatoo Man, a large, rugged Aboriginal adult buried in the Lachlan riverine plains of southeastern Australia, was discovered in 2011. Laser‐ablation uranium series analysis on bone yielded a minimum age for the burial of 27.4 ± 0.4 ka (2σ). Single‐grain, optically stimulated luminescence ages on quartz sediment in which the grave had been dug gave a weighted mean age of 26.4 ± 1.5 ka (1σ). Luminescence samples from the grave infill and from sediment beneath the grave exhibit overdispersed dose distributions consistent with bioturbation or other disturbance, which has obscured the burial signal. The overlap between the minimum (U‐series) and maximum (luminescence) ages places the burial between 27.0 and 29.4 ka (2σ). Luminescence ages obtained from the channel belt of between 28 ± 2 and 25 ± 3 ka indicate that fluvial sedimentation was occurring before the Last Glacial Maximum, which is consistent with the broader geomorphic setting. Together, these results are internally and regionally consistent, and indicate that Kiacatoo Man was one of the more ancient individuals so far identified in Australia. His remains are important to our understanding of patterns of biological variation and other processes that have shaped people in the Murray‐Darling Basin through time. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   
6.
7.
The impact of turbulent flow on plane strain fluid‐driven crack propagation is an important but still poorly understood consideration in hydraulic fracture modeling. The changes that hydraulic fracturing has experienced over the past decade, especially in the area of fracturing fluids, have played a major role in the transition of the typical fluid regime from laminar to turbulent flow. Motivated by the increasing preponderance of high‐rate, water‐driven hydraulic fractures with high Reynolds number, we present a semianalytical solution for the propagation of a plane strain hydraulic fracture driven by a turbulent fluid in an impermeable formation. The formulation uses a power law relationship between the Darcy‐Weisbach friction factor and the scale of the fracture roughness, where one specific manifestation of this generalized friction factor is the classical Gauckler‐Manning‐Strickler approximation for turbulent flow in a rough‐walled channel. Conservation of mass, elasticity, and crack propagation are also solved simultaneously. We obtain a semianalytical solution using an orthogonal polynomial series. An approximate closed‐form solution is enabled by a choice of orthogonal polynomials embedding the near‐tip asymptotic behavior and thus giving very rapid convergence; a precise solution is obtained with 2 terms of the series. By comparison with numerical simulations, we show that the transition region between the laminar and turbulent regimes can be relatively small so that full solutions can often be well approximated by either a fully laminar or fully turbulent solution.  相似文献   
8.
The aim of this paper is to formulate a micromechanics‐based approach to non‐aging viscoelastic behavior of materials with randomly distributed micro‐fractures. Unlike cracks, fractures are discontinuities that are able to transfer stresses and can therefore be regarded from a mechanical viewpoint as interfaces endowed with a specific behavior under normal and shear loading. Making use of the elastic‐viscoelastic correspondence principle together with a Mori‐Tanka homogenization scheme, the effective viscoelastic behavior is assessed from properties of the material constituents and damage parameters related to density and size of fractures. It is notably shown that the homogenized behavior thus formulated can be described in most cases by means of a generalized Maxwell rheological model. For practical implementation in structural analyses, an approximate model for the isotropic homogenized fractured medium is formulated within the class of Burger models. Although the approximation is basically developed for short‐term and long‐term behaviors, numerical applications indicate that the approximate Burger model accurately reproduce the homogenized viscoelastic behavior also in the transient conditions.  相似文献   
9.
The structure, functioning and hydrodynamic properties of aquifers can be determined from an analysis of the spatial variability of baseflow in the streams with which they are associated. Such analyses are based on simple low‐cost measurements. Through interpreting the hydrological profiles (Q = f(A)) it is possible to locate the aquifer(s) linked to the stream network and to determine the type of interrelated flow, i.e. whether the stream drains or feeds the aquifer. Using an analytical solution developed for situations with a positive linear relationship, i.e. where the baseflow increases linearly with increasing catchment size, it is also possible to estimate the permeability of the aquifer(s) concerned at catchment scale. Applied to the hard‐rock aquifers of the Oman ophiolite, this method shows that the ‘gabbro’ aquifer is more permeable than the ‘peridotite’ aquifer. As a consequence the streams drain the peridotites and ‘leak’ into the gabbro. The hydrological profiles within the peridotite are linear and positive, and indicate homogeneity in the hydrodynamic properties of these formations at the kilometre scale. The permeability of the peridotite is estimated at 5 · 10?7 to 5 · 10?8 m/s. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
10.
刘林  胡松杰 《天文学报》1996,37(3):285-293
对于改进的Encke方法,选择适当的参考轨道是一个关键.然而,对于人造地球卫星长弧轨道计算,目前所给出的几种参考轨道均需要逐段校正,这将给定轨问题带来附加的复杂性.本文将仔细探讨如何选择参考轨道和减少校正次数.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号